What Do Tim O’Reilly, Lady Gaga, and Marissa Mayer All Have In Common?

lady-gaga-nerd-glasses

This post examines the followers of some popular Twitter users as the final installment of a multi-part series about exploring Twitter influence by asking the (Freakonomics-inspired) question, What do Tim O’Reilly, Lady Gaga, and Marissa Mayer all have in common? Although it may initially seem like an obnoxious question to ask, some of the answers may intrigue you once you begin to take a closer look at the data. (Although dashingly good looks might be one thing that they all have in common, we’ll let the data do the talking and stick with Twitter followers as the basis of computing similarity for this post.)

tim_gaga_marissa

Which two of these three accomplished entrepreneurs are most alike? It all depends on the features that you’re comparing!

Goals

The initial idea behind this entire series on Twitter influence is that it would be an interesting and educational experiment in data science to put Tim O’Reilly‘s ~1.7 million followers under the microscope and explore the correlation between popularity (based upon number of followers) and Twitter influence. 

In order to draw some meaningful comparisons, however, we’ll need to consider at least one other account. Marissa Mayer seems like a fine selection for comparison since her Twitter account is similar yet different to Tim’s account. For example, she’s also a “tech celebrity” and business executive. However, her particular expertise is not quite the same, and she only has about one-fourth as many followers. (Or so it would initially appear…)

Just to make this interesting, let’s further mix things up a bit by introducing a wildcard. Lady Gaga seems as good a choice as any to introduce a bit of unexpected fun into the situation. She is one of the ten most popular Twitter users based upon number of followers, an accomplished entrepreneur, and  surely draws interest from a broad cross-section of the population.  The introduction of a third account also provides the opportunity to draw some additional comparisons, so let’s compute the Jaccard index for the various combinations of these three accounts and see what turns up. The Jaccard index measures similarity between sample sets, and is defined as the size of the intersection divided by the size of the union of the sample sets, or, more plainly, the amount of overlap between the sets divided by the total size of the combined set. This is a simple way to measure and compare the overlap in followers.

Results

The full results (example code, notes, and the results from executing each cell) are available as an IPython Notebook, and you are encouraged to review it in depth. For convenience, a summary of the key results that you’ll see computed in the notebook follow:

  • Approximately 50% of Tim O’Reilly’s ~1.7 million followers are “suspect” in the sense that they may be inactive accounts or spam bots. In comparison, only about 15% of Marissa Mayer’s ~460k followers are suspect according to the same criteria.
    • Although mostly speculative, this difference might be explainable by a massive wave of spam-bots targeting popular users back in 2009 when Twitter experienced some unprecedented growth in its number of users. (For example, a closer look at the data reveals that ~66% of Tim O’Reilly’s followers joined Twitter in 2009.)

A histogram of Tim O’Reilly’s followers who have fewer than 10 followers of their own. Approximately 50% of these followers are “suspect” in that they may be spam-bots or inactive accounts; decreasing the threshold to 5 decreases the number to just under 40%.

  • Approximately 25% of Tim O’Reilly’s (“non-suspect”) followers also follow Lady Gaga as compared to only about 18% for Marissa Mayer.
    • In other words, there appears to be a slightly stronger affinity between Tim O’Reilly and Lady Gaga than between Marissa Mayer and Lady Gaga.
  • Lady Gaga has a higher Jaccard similarity to Tim O’Reilly than to Marissa Mayer. (However, Tim O’Reilly and Marissa Mayer have a much higher Jaccard similarity to one another than either one of them have to Lady Gaga, as might have been reasonably expected from their strong technology backgrounds.)
    • Tim O’Reilly and Marissa Mayer have ~100k followers in common, and even once this number is adjusted for suspect followers, there are still ~95k followers in common. This is a high number but doesn’t seem all that surprising.
    • What may seem a bit unexpected is that once you introduce Lady Gaga, this number only drops to ~25k. In other words, the total number of followers that Tim O’Reilly, Marissa Mayer, and Lady Gaga all have in common amongst the three of them is still about 25k accounts.

Perhaps the broad takeaway that addresses our initial inquiry about using popularity as an indicator of clout is that “number of followers” is not as clear cut a heuristic as it may have first seemed. After all, the actual gap between Tim O’Reilly and Marissa Mayer appears to be considerably smaller than it once appeared after making a simple adjustment for so-called “suspect” followers.

But what do Tim O’Reilly, Lady Gaga, and Marissa Mayer have in common? At least one way of answering the question is that there appears to be that there at least 25k common fans who are interested in all three of them. After all, Twitter is an interest graph. A closer analysis of these common account profiles could prove quite interesting and is a recommended exercise.

Although nothing definitive was proven, it seems quite likely that a coarse filter on an account’s followers is a good starting point. It wouldn’t be too difficult to perform some additional filtering to increase the precision of identifying abandoned accounts or spam bots that cannot be influenced in order to more accurately narrow in on a base metric for computing Twitter influence. You now have the tools and a good starting point to do just that — and a lot of other fun stuff.

By the way, you notice that we didn’t tell you how many of Lady Gaga’s followers appear to be spambots or inactive. That is the topic for another post to follow. (Unless, of course, you beat me to the punch!)

Enjoy!

Updates

23 Nov 13 @ 1900UTC – Like Tim O’Reilly, approximately 50% of Lady Gaga’s followers are also “suspect” when applying the same “minimum follower” filter. She joined Twitter around the same time as Tim O’Reilly back in March 2008.

More analysis to follow soon with a closer look at ‘suspect’ followers with the goal of identifying the inactive/spambot accounts with very high probability. Thoughts on criteria to use are welcome. Leave a comment

Resources

About these ads

4 Comments on “What Do Tim O’Reilly, Lady Gaga, and Marissa Mayer All Have In Common?

  1. Pingback: What Tim O’Reilly, Lady Gaga, and Marissa Mayer All Have In Common | Enjoying The Moment

  2. Missing in your analysis: @TimOReilly was on Twitter’s original suggested user list and continues to be recommended to new users under Technology. That’s a significant factor in when users followed him and the affinity or engagement they might show — and a good example of how focusing on statistics and data can sometimes leave out a (somewhat) hidden factor that explains patterns you find.

    • Alex – Thanks for mentioning this. It also came up in discussion with Tim, and somehow I still failed to mention it. You’re right that he was on the earliest incantations of the “who to follow” list. More directly to your point: this might have made him an easier target for spam bots since he was a high visibility account?

      I often see Lady Gaga as a promoted user, so it looks like she’s definitely putting some money into Twitter ads, so I suppose there could be some consideration here as well.

      I haven’t ever noticed Marissa Mayer as a suggested user or in promotional content, though I haven’t looked too hard for her either.

      I am hoping to write-up a Part 2 to this analysis sometime soon. I pulled down all of the followers for a few other high profile accounts like Barack Obama and Ashton Kutcher and am hoping to expand the analysis with the five of them. Thoughts or requests for analysis are more than welcome.

  3. Pingback: Exploring Twitter Influence with Jaccard Similarity and Python - O'Reilly Radar

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 4,590 other followers

%d bloggers like this: